

N-Heterocyclic Carbene-Catalyzed Construction of 1,3,5-Trisubstituted Benzenes from Bromoenals and α -Cyano- β methylenones

Chun-Lin Zhang^{†,‡} and Song Ye*,^{†,‡}

Supporting Information

ABSTRACT: A direct and efficient approach to 1,3,5trisubstituted benzenes has been developed via N-heterocyclic carbene-catalyzed [2 + 4] annulation of α -bromoenals and α cyano- β -methylenones. The reaction worked well for both aryl- and alkylenones.

1,3,5-Trisubstituted benzenes are of great importance for their diverse applications in material science. They have been widely employed as building blocks in the design and synthesis of organic electroluminescent devices, porous materials, potential chemosensors,³ and bulky ligands⁴ due to their π conjugation, high-rate electron transfer, and nonplanner characteristics. Hence, much attention has been focused toward the synthesis of 1,3,5-trisubstituted benzenes. In particular, transition-metal-catalyzed [2 + 2 + 2] cycloaddition of alkynes, pioneered by Reppe et al. in 1948,5 emerged as the most convenient and straightforward methodology (Scheme 1, reaction a).6 However, this approach is limited to homotrimerization of alkynes.7 Otherwise, a complex mixture of 1,3,5triarylbenzenes would be produced for the heterotrimerization

Scheme 1. Synthesis of 1,3,5-Trisubstituted Benzenes

Previous work:

of two or more alkynes. 6e,8 Alternatively, the transition-metalcatalyzed cross-coupling reaction has been proven to be a versatile tool to the access of homo- and hetero-1,3,5-triaryl benzenes (Scheme 1, reaction b). However, this strategy requires a multistep synthesis from a pre-existing benzene ring equipped with heteroatoms or other functional groups and the difficulty of removing the toxic metal species from the desired products has led to growing concern. The rapid construction of 1,3,5-trisubstituted, particularly hetero-1,3,5-trisubstituted, benzenes with excellent regio- and chemoselectivities under mild conditions is still highly desired. 11 In this paper, we report the N-heterocyclic carbene-catalyzed rapid construction of homo- and hetero-1,3,5-trisubstituted benzenes from readily available bromoenals and α -cyano- β -methylenones (Scheme 1,

In the past decades, N-heterocyclic carbenes (NHCs) have emerged as one of the most powerful organocatalysts to construct various organic molecules. 12 However, the NHCcatalyzed synthesis of multisubstituted benzenes was extremely limited. In 2014, Chi and co-workers first reported the direct construction of benzene ring via oxidative NHC-catalyzed yaddition of enals to activated enones, 13 followed by the related [4 + 2] annulation via oxidative NHC-catalyzed δ -addition of $\alpha,\beta-\gamma,\delta$ -diunsaturated aldehydes to 1,3-dicarbonyl compounds. 14 In 2015, Lupton and co-workers reported the synthesis of multisubstituted benzenes via NHC-catalyzed cleavage of the ester and recombination. 15 Very recently, Wang et al. and our group independently developed a mild and convenient multisubstituted benzenes synthesis through oxidative NHC-catalyzed β -addition of enals to α -cyano- β methylenones. 16 Based on our previous work, we envisioned that the NHC-catalyzed annulation of bromoenals 17 and α cyano- β -methylenones may give the corresponding cyanocyclo-

Received: November 4, 2016 Published: December 5, 2016

[†]Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[‡]University of Chinese Academy of Sciences, Beijing 100049, China

Organic Letters Letter

hexadiene, which can be transformed to the desired multisubstituted benzenes (Scheme 1, reaction c).

Initially, the model reaction of bromoenal 1a and enone 2a was investigated under NHC catalysis (Table 1). It was found

Table 1. Reaction Optimization^a

entry	preNHC	base	solvent	yield (%) ^b
1 ^c	A	Cs ₂ CO ₃	DCM	$0 (86)^d$
2	A	Cs_2CO_3	DCM	78
3	В	Cs_2CO_3	DCM	64
4	C	Cs_2CO_3	DCM	trace
5	D	Cs_2CO_3	DCM	trace
6	A	K_2CO_3	DCM	70
7	A	DIPEA	DCM	39
8	A	Cs_2CO_3	toluene	74
9	A	Cs_2CO_3	THF	85
10	A	Cs_2CO_3	Et_2O	59
11	A	Cs_2CO_3	CH ₃ CN	44
12	A	Cs_2CO_3	1,4-dioxane	87
13 ^e	A	Cs_2CO_3	1,4-dioxane	78
14 ^f	A	Cs_2CO_3	1,4-dioxane	46
15	A	DBU^g	1,4-dioxane	36

"Reaction conditions: 1a (0.3 mmol), 2a (0.2 mmol) in the presence of preNHC (0.04 mmol) and Cs_2CO_3 (0.3 mmol) at room temperature until complete consumption of the starting material as monitored by TLC, and then DBU (0.3 mmol) was added. ^bIsolated yield. ^c3.0 equiv of Cs_2CO_3 and no DBU was used. ^dIsolated yield of 3aa' in parentheses. ^epreNHC A (10 mol %) was used. ^fpreNHC A (5 mol %) was used. ^gDBU (3.0 equiv) was used in a one-step instead of a two-step addition of Cs_2CO_3 and DBU. DBU = 1,8-Diazabicyclo-[5.4.0]undec-7-ene.

that the reaction catalyzed by bicyclic N-phenyltriazolium NHC precursor A in the presence of 3.0 equiv of Cs₂CO₃ gave no desired 1,3,5-triphenylbenzene 3aa but cyanocyclohexadiene 3aa' in 86% yield (entry 1). We were pleased to find that 1,3,5triphenylbenzene 3aa was isolated in 78% yield when DBU was used as the second base for the elimination of cyanide (entry 2). N-Mesityl NHC precursor B led to similar results as NHC precursor A (entry 3), but monocyclic imidazolium NHC precursors C and D did not work for the reaction (entries 4 and 5). The screening of bases revealed that K₂CO₃ performed well but diisopropylethyl amine (DIPEA) did not (entries 6 and 7). The reaction worked in several solvents, and 1,4-dioxane is the best choice (entries 8-12). Reducing the loading of NHC to 10 or 5 mol % resulted in some loss of the yields (entries 13– 14). It should be noted that use of DBU as the sole base instead of Cs₂CO₃/DBU resulted in a much lower yield (entry 15), which suggests different bases are required for the generation of NHC from its precursor and the elimination of cyanide from cyanocyclohexadiene.

With the optimized reaction conditions in hand, a wide variety of α -bromoenals were then briefly explored (Table 2). It

Table 2. Scope of α -Bromoenals^{α}

entry	1	Ar	2a	3	yield ^b
1	1a	Ph	2a	3aa	87
2	1b	4-MeOC ₆ H ₄	2a	3ba	94
3	1c	$4-MeC_6H_4$	2a	3ca	89
4	1d	$4-FC_6H_4$	2a	3da	88
5	1e	4-ClC ₆ H ₄	2a	3ea	87
6	1f	4 -Br C_6H_4	2a	3fa	92
7	1g	4-CNC ₆ H ₄	2a	3ga	89
8	1h	$3-MeOC_6H_4$	2a	3ha	98
9	1i	$2-MeC_6H_4$	2a	3ia	78
10	1j	2 -Br C_6H_4	2a	3ja	79
11	1k	2 -Br- 5 -MeOC $_6$ H $_3$	2a	3ka	96
12 ^c	1a	Ph	2a	3aa	86

"Reaction conditions: 1 (0.3 mmol), 2 (0.2 mmol) in the presence of preNHC A (0.04 mmol) and Cs₂CO₃ (0.3 mmol) at room temperature until complete consumption of the starting material as monitored by TLC, and then DBU (0.3 mmol) was added. ^bIsolated yield. ^cGram scale reaction with 1.58 g (7.5 mmol) of bromoenal 1a.

was found that both electron-rich (4-MeOC₆H₄, 4-MeC₆H₄) and electron-deficient (4-FC₆H₄, 4-ClC₆H₄, 4-BrC₆H₄, and 4- CNC_6H_4) para-substituted β -aryl- α -bromoenals (1b-1g) could participate in the reaction to give the desired 1,3,5triarylbenzenes 3aa-3ga in high yields (entries 2-7). β -Aryl- α bromoenals (1h-1j) with different substituents with varying electronic properties at the meta- (3-MeOC₆H₄) or orthoposition (2-MeC₆H₄ and 2-BrC₆H₄) were tolerated to give the corresponding products 3ha-3ja in good yields (entries 8-10). In addition, the β -aryl- α -bromoenal 1k with a meta, orthodisubstituted aryl group (2-Br-3-MeOC₆H₄) worked well to give the 1,3,5-triarylbenzene 3ka in excellent yield (entry 11). It is worth noting that the reaction could be carried out at gram scale without loss in yield (entry 12). However, no desired benzene product was observed when alkyl instead of aryl bromoenal was used for the reaction under the current conditions.

The scope of enones was then investigated (Table 3). To our delight, β -arylenones 2b-2f with electron-rich (R² = 4-MeOC₆H₄, 4-MeC₆H₄) and electron-deficient substituents $(R^2 = 4-ClC_6H_4, 4-BrC_6H_4, 4-NO_2C_6H_4)$ worked well to give the 1,3,5-triarylbenzenes 3fb-3ff in high yields (entries 1-5). The reaction of β -arylenones **2g–2h** with *meta*-substituents (\mathbb{R}^2 = $3-MeC_6H_4$, $3-ClC_6H_4$) also went smoothly to give products 3fg-3fh in high yields (entries 6–7). β -Arylenones 2i–2h with ortho-substituents ($R^2 = 2\text{-MeC}_6H_4$, 2-ClC_6H_4) were also tolerated despite the small decrease but still good yields (entries 8–9). The reaction of β -naphthylenone 2k afforded the triarylbenzene 3fk in 79% yield (entry 10). In addition, β heteroarylenones 2l-2m ($R^2 = 2$ -furyl, 2-thienyl) gave the corresponding products 3fl-3fm in good yields (entries 11-12). Interestingly, the reaction of β -methylenone **2n** was also feasible to give alkyldiarylbenzene **3en** in 65% yield (entry 13). Furthermore, arylenones with electron-rich ($R^1 = 4$ -MeOC₆H₄) as well as electron-deficient groups $(R^1 = 4-FC_6H_4)$ or Organic Letters Letter

Table 3. Scope of Enones^a

						1
entry	1	2	\mathbb{R}^1	\mathbb{R}^2	3	yield ^b
1	1f	2b	Ph	4-MeOC ₆ H ₄	3fb	89
2	1f	2c	Ph	$4-MeC_6H_4$	3fc	90
3	1f	2d	Ph	4-ClC ₆ H ₄	3fd	95
4	1f	2e	Ph	4 -BrC $_6$ H $_4$	3fe	91
5	1f	2f	Ph	$4-NO_2C_6H_4$	3ff	72
6	1f	2g	Ph	$3-MeC_6H_4$	3fg	88
7	1f	2h	Ph	3-ClC ₆ H ₄	3fh	89
8	1f	2i	Ph	2-MeC_6H_4	3fi	61
9	1f	2j	Ph	2-ClC ₆ H ₄	3fj	66
10	1f	2k	Ph	β -naphthyl	3fk	79
11	1f	21	Ph	2-fuyl	3fl	77
12	1f	2m	Ph	2-thienyl	3fm	90
13	1e	2n	Ph	Me	3en	65
14	1e	20	4-MeOC ₆ H ₄	Ph	3eo	85
15	1f	2p	$4-FC_6H_4$	Ph	3fp	91
16	1e	2q	2-thienyl	Ph	3eq	91
17	1f	2r	Me	Ph	3fr	60
18	1f	2s	Et	Ph	3fs	55
19	1f	2t	<i>i</i> -Pr	Ph	3ft	53
an.		•		h		

^aReaction conditions same as those in Table 2. ^bIsolated yield.

heteroaryl ($R^1 = 2$ -thienyl) all worked to give the desired products in good yields (entries 14–16). Remarkably, alkylenones 2r-2t were also tolerated to provide the 1,3,5-alkyldiarylbenzenes 3fr-3ft in good yields (entries 17–19).

Several control experiments were carried out to further clarify the formation of cyanocyclohexadiene as the intermediate (Scheme 2). As expected, the reaction of bromoenal and

Scheme 2. Mechanistic Studies

cyanoenone gave cyanocyclohexadiene **3aa**' in 94% yield, which could be transformed to the corresponding 1,3,5-triphenylbenzene **3aa** in 93% yield in the presence of DBU as the base with elimination of the cyanide.

On the basis of the results, a plausible catalytic cycle for the reaction is depicted in Figure 1. As previously reported, ¹⁷ the addition of the NHC catalyst to bromoenal 1 and the following elimination of bromide under basic conditions gave the α , β -unsaturated acylazolium intermediate I. The Diels–Alder reaction of dienolate 2', generated in situ from enone 2 in the presence of base, and α , β -unsaturated acylazolium intermedate I as the dienophile, affords the adduct II. The intramolecular acylation of adduct II gives β -lactone-fused cyclohexene III and regenerates the NHC catalyst. The release

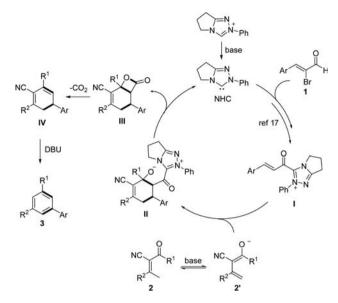


Figure 1. Plausible catalytic cycle.

of CO_2 from adduct III leads to the formation of cyclohexadiene IV . The DBU-promoted elimination of cyanide from cyclohexadiene IV furnishes the final 1,3,5-trisubstituted benzene 3.

In summary, we have developed an NHC-catalyzed [2 + 4] annulation of α -bromoenals and α -cyano- β -methylenones for the synthesis of homo- and hetero-1,3,5-trisubstituted benzenes. To the best of our knowledge, this transition-metal-free method represents the first example of direct construction of asymmetric 1,3,5-trisubstituted benzenes via NHC catalysis. The utility of the cyano moiety as a traceless activating group of α -cyano- β -methylenones is the key to this simple yet highly effective strategy. This approach features high yields, a broad substrate scope, and mild reaction conditions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b03306.

Experimental details and NMR and HPLC spectra for obtained compounds (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: songye@iccas.ac.cn.

ORCID ®

Song Ye: 0000-0002-3962-7738

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (Nos. 21425207, 21521002) and the Chinese Academy of Sciences is greatly acknowledged.

Organic Letters Letter

REFERENCES

- (1) (a) Khotina, I. A.; Shmakova, O. E.; Baranova, D. Y.; Burenkova, N. S.; Gurskaja, A. A.; Valetsky, P. M.; Bronstein, L. M. *Macromolecules* **2003**, *36*, 8353. (b) Shirota, Y. *J. Mater. Chem.* **2005**, *15*, 75.
- (2) (a) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. J. Am. Chem. Soc. 2011, 133, 11478. (b) Li, S.-L.; Lan, Y.-Q.; Sakurai, H.; Xu, Q. Chem. Eur. J. 2012, 18, 16302. (c) Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Angew. Chem., Int. Ed. 2014, 53, 4850. (d) Sakaushi, K.; Antonietti, M. Acc. Chem. Res. 2015, 48, 1591. (e) Yang, B.; Björk, J.; Lin, H.; Zhang, X.; Zhang, H.; Li, Y.; Fan, J.; Li, O.; Chi, L. J. Am. Chem. Soc. 2015, 137, 4904.
- (3) Vishnoi, P.; Walawalkar, M. G.; Sen, S.; Datta, A.; Patwari, G. N.; Murugavel, R. *Phys. Chem. Chem. Phys.* **2014**, *16*, 10651.
- (4) (a) de Ruiter, G.; Thompson, N. B.; Lionetti, D.; Agapie, T. J. Am. Chem. Soc. 2015, 137, 14094. (b) Lin, P.-H.; Takase, M. K.; Agapie, T. Inorg. Chem. 2015, 54, 59. (c) de Ruiter, G.; Thompson, N. B.; Takase, M. K.; Agapie, T. J. Am. Chem. Soc. 2016, 138, 1486.
- (5) Reppe, W.; Schweckendiek, W. J. Justus Liebigs Ann. Chem. 1948, 560, 104.
- (6) (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
 (b) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 2005, 4741.
 (c) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.
 (d) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085.
 (e) Galan, B. R.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2830.
- (7) (a) Hilt, G.; Vogler, T.; Hess, W.; Galbiati, F. Chem. Commun. **2005**, 1474. (b) Xu, Y.-L.; Pan, Y.-L.; Wu, Q.; Wang, H.-S.; Liu, P.-Z. J. Org. Chem. **2011**, 76, 8472. (c) Wagh, K. V.; Bhanage, B. M. ACS Sustainable Chem. Eng. **2016**, 4, 4232.
- (8) Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001, 123, 7925. (9) (a) Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. 2009, 11, 3374. (b) Zhao, F.; Zhang, Y.-F.; Wen, J.; Yu, D.-G.; Wei, J.-B.; Xi, Z.; Shi, Z.-J. Org. Lett. 2013, 15, 3230.
- (10) Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J. J. Am. Chem. Soc. 2015, 137, 8328.
- (11) (a) Zhao, Y.; Li, J.; Li, C.; Yin, K.; Ye, D.; Jia, X. Green Chem. **2010**, 12, 1370. (b) Deng, K.; Huai, Q.-Y.; Shen, Z.-L.; Li, H.-J.; Liu, C.; Wu, Y.-C. Org. Lett. **2015**, 17, 1473.
- (12) For selected reviews, see: (a) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511. (b) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314. (c) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686. (d) Vora, H. U.; Wheeler, P.; Rovis, T. Adv. Synth. Catal. 2012, 354, 1617. (e) Bode, J. W. Nat. Chem. 2013, 5, 813. (f) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. (g) Chen, X.-Y.; Ye, S. Synlett 2013, 24, 1614. (h) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. (i) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307. (j) Menon, R. S.; Biju, A. T.; Nair, V. Chem. Soc. Rev. 2015, 44, 5040.
- (13) Zhu, T.; Zheng, P.; Mou, C.; Yang, S.; Song, B.-A.; Chi, Y. R. Nat. Commun. 2014, 5, 5027.
- (14) Zhu, T.; Mou, C.; Li, B.; Smetankova, M.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658.
- (15) Candish, L.; Levens, A.; Lupton, D. W. Chem. Sci. 2015, 6, 2366. (16) (a) Jia, Q.; Wang, J. Org. Lett. 2016, 18, 2212. (b) Zhang, C.-L.; Gao, Z.-H.; Liang, Z.-Q.; Ye, S. Adv. Synth. Catal. 2016, 358, 2862.
- (17) (a) Sun, F.-G.; Sun, L.-H.; Ye, S. Adv. Synth. Catal. 2011, 353, 3134. (b) Yao, C.; Wang, D.; Lu, J.; Li, T.; Jiao, W.; Yu, C. Chem. Eur. J. 2012, 18, 1914. (c) Yetra, S. R.; Bhunia, A.; Patra, A.; Mane, M. V.; Vanka, K.; Biju, A. T. Adv. Synth. Catal. 2013, 355, 1089. (d) Zhang, C.-L.; Wang, D.-L.; Chen, K.-Q.; Ye, S. Org. Biomol. Chem. 2015, 13, 11255. (e) Mondal, S.; Yetra, S. R.; Patra, A.; Kunte, S. S.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2014, 50, 14539. (f) Ni, Q.; Song, X.; Raabe, G.; Enders, D. Chem. Asian J. 2014, 9, 1535. (g) Yang, Y.-J.; Zhang, H.-R.; Zhu, S.-Y.; Zhu, P.; Hui, X.-P. Org. Lett. 2014, 16, 5048. (h) Zhang, H.-M.; Jia, W.-Q.; Liang, Z.-Q.; Ye, S. Asian J. Org. Chem. 2014, 3, 462. (i) Gao, Z.-H.; Chen, X.-Y.; Zhang, H.-M.; Ye, S. Chem. Commun. 2015, 51, 12040. (j) Chen, K.-Q.; Li, Y.; Zhang, C.-L.; Sun, D.-Q.; Ye, S. Org. Biomol. Chem. 2016, 14, 2007.

(18) (a) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736. (b) Chiang, P.-C.; Rommel, M.; Bode, J. W. J. Am. Chem. Soc. 2009, 131, 8714. (c) Cardinal-David, B.; Raup, D. E. A.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 5345. (d) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2011, 133, 4694. (e) Levens, A.; Zhang, C.; Candish, L.; Forsyth, C. M.; Lupton, D. W. Org. Lett. 2015, 17, 5332.